大森 健史 (オオモリ タケシ)

OMORI Takeshi

写真a

機関リポジトリを検索

職名

准教授

研究室所在地

杉本キャンパス

ホームページ

https://ocu-fluid.jp

取得学位 【 表示 / 非表示

  • ダルムシュタット工科大学(TU Darmstadt) -  工学博士(Dr.-Ing.)

委員歴等 【 表示 / 非表示

  • 2009年04月
    -
    現在

    大阪大学サイバーメディアセンター   高性能計算機システム委員

受賞歴 【 表示 / 非表示

  • 日本伝熱学会賞 学術賞

    2020年05月   日本伝熱学会

    受賞者:山口 康隆, スルブリス ドナタス, 大森 健史, 楠戸 宏城

  • 日本機械学会賞(論文)

    2018年04月   日本機械学会

    受賞者:足立 理人, 大森 健史, 梶島 岳夫

現在の職務 【 表示 / 非表示

  • 大阪市立大学   工学研究科   機械物理系専攻   准教授  

 

論文 【 表示 / 非表示

講演・口頭発表等 【 表示 / 非表示

  • 固液摩擦力の揺らぎを用いた固液摩擦の周波数特性の抽出

    大賀 春輝, 大森 健史, Herrero Cecilia, Merabia Samy, Joly Laurent, 山口 康隆

    日本流体力学会年会  2021年09月 

  • マクロの流れを伴うミクロの系における局所的応力テンソルの計算: 速度分布関数に基づくMethod-of-Planeの定式化

    楠戸 宏城, 大森 健史, 山口 康隆

    日本流体力学会年会  2021年09月 

  • 微小スケールの物理に立脚した動的濡れの数値計算

    大森 健史  [招待有り]

    化学工学会 粒子・流体プロセス部会 熱物質流体工学分科会  2021年09月 

  • A Three-Dimensional Model for Capillary Flow in Rectangular Nanochannels

    Kuan-Ting Chen, Qin-Yi Li, Takeshi Omori, Yasutaka Yamaguchi, Tatsuya Ikuta, Koji Takahashi

    日本伝熱シンポジウム  2021年05月 

  • Lennard-Jones 流体の動的接触線近傍の流れ場と粘性応力の抽出

    楠戸 宏城, 大森 健史, 山口 康隆

    日本伝熱シンポジウム  2021年05月 

全件表示 >>

科研費(文科省・学振)獲得実績 【 表示 / 非表示

  • Navier境界条件の再定義:固体面における流体力学的境界条件の構築

    科学研究費助成事業 基盤研究(C) 代表者

    研究期間:

    2018年04月
    -
    2023年03月
     

    分担者・その他:山口 康隆

     概要を見る

    (a)非平衡統計力学における線形応答理論に基づいた平衡分子動力学法(EMD)と(b)Navier-Stokes方程式に基づいた非平衡分子動力学法(NEMD)による両面からのアプローチを試みた。(a)EMDを用いた解析では、壁面摩擦応力の自己相間関数(FAC)のGreen-Kubo積分がゼロに収束するために、滑り摩擦係数を評価できないという問題が長年指摘されてきた。本研究では、平衡場における粗視化された流体運動がLangevin方程式により表されるとの考えに基づき導出した理論式がEMDにより得られたFACをよく再現することを示し、関数のフィッティングパラメータとして滑り摩擦係数を同定できることを示した。同時に我々が以前に提案したFACの時間積分のピーク値を滑り摩擦係数とする方法は壁面の疎液性が強いほど有効性の高いことを理論的に明らかにした。(b)分子スケールの流れであっても壁面と流体力学的境界の間の領域を除けば、Navier-Stokes方程式とNavier境界条件による記述が有効であり、NEMDの解析によってNavier境界条件の適用される流体力学的境界が同定できることを示した。滑り摩擦係数が周波数依存すると一般化することにより、流体の固液界面における粘弾性的振る舞いについても連続体力学によって分子動力学法による計算結果をよく再現できた。この解析によって同定された流体力学的境界の位置と(a)の解析で得られた粗視化された流体の重心位置は近いものの同じではない点が興味深い。

  • ピニングを有する不均一な固体面上での微視的Youngの式

    科学研究費助成事業 基盤研究(C) 分担者・その他

    研究期間:

    2018年04月
    -
    2022年03月
     

     概要を見る

    まずピニングを有する接触線を扱う上で理論的前提となる平滑な固体壁面上の平衡状態の濡れについて,分子動力学法(MD)を用いた解析を行った.壁面上の半円柱状の平衡状態のアルゴン液滴について,固気液の界面が交わる接触線近傍の領域を包括する矩形の検査体積を考え, その中の流体部分に働く領域外の流体からの力の寄与,即ち応力寄与を算出し,その和がゼロになることを示した.平衡状態では固体と液体の寄与の和がゼロになるので,研究の計画段階で示唆されたように,平滑な壁面上では接触線に対して固体から働く力もゼロであることがこの解析より明らかとなった.これを前提に,先述の検査体積に働く応力の寄与を,思考実験を介してマクロスケールにおける界面張力と力学的に接続し,ミクロスケールのYoung の式が, 固体からの平均的な場が水平方向の力を与えないという前提の下で, 接触線を囲む検査体積に働く応力の釣り合いを表すものであることを証明した.また,先述の界面張力を,熱力学積分法という最新の方法を用いることで自由エネルギーの形で熱力学的に抽出でき,これが力学的な解釈と一致することも示した.この成果を,本分野で定評ある査読付き国際学術誌であるJournal of Chemical Physicsで発表したほか,複数の国内学会で発表した.
    また,主要な課題であるピニングを扱うため,固体壁面上に固液間相互作用の異なる部分の境界線を有する場合の接触線の挙動について,準二次元的な解析を行った.接触線がこの境界近傍にあるとき,平滑面とは異なり固体からの力が働き,これを外力とみると,先述のYoungの式に補正項として加わるが,MD解析からその値を抽出することで,この考えが正しいことを立証した.さらにピニング状態から離脱するために必要となる最小仕事を見積もった.この成果を複数の国内学会で発表し,国際学術誌に投稿準備中である.